	Unit – 2 Tension member				
1	The rolled steel beams are mainly used				
	А.	In built up sections of columns	B.	To resist bending	
	C.	To resist axial forces (compressive or tensile)	D.	All of these	
2	Rol	led steel T-sections are used			
	A.	To transmit bracket loads to the	B.	With flat strips to connect plates	
		columns		in the steel rectangular tanks	
	C.	In both (A) and (B)	D.	None of these	
3	The	rolled steel flats are used as mem	bers.		
	А.	Tension	В.	Compression	
	C.	Transverse	D.	None of these	
4	The	brittleness of steel with the increa	se of	percentage of carbon.	
	А.	Increase	В.	Decrease	
	C.	Decrease	D.		
5	The	ductility of stele increases with the increase	e of p	percentage of carbon.	
	А.	Yes	В.	No	
	C.		D.		
6	The	strength of steel increases with the increase	e of p	ercentage of carbon.	
	А.	True	B.	False	
	C.		D.		
7	Des	sign tensile strength of tension member	is go	verned by	
	А.	Yielding of gross section	В.	Rupture of critical section	
	C.	Block shear of end region	D.	Lesser of above three	
8	A 't	ie' is a			
	A.	Tension member	B.	Compression member	
	C.	Flexural member	D.	Biaxial member	
9	The	maximum spacing of tack bolts for a tension	on me	ember	
	А.	16 t	B.	600 mm	
	C.	1000 mm	D.	200 mm	
10	Two	o angles back to back used as a tension men	nber.	If two angles are not tack bolted, the	
	A.	Increase	B.	Decrease	
	C.	Remains same	D.	None of these	
11	ʻlug	g angles' is used at a joint			
	А.	To increase design tension capacity	B.	To replace tack bolts	
	C.	To reduce length of joint	D.	To take care of load reversals	
12	In a	ingle member, lug angle should be desig	ned	to carry excess force, that	
	in o	outstanding leg of member.			
	А.	10 %	B.	20 %	

	C.	30 %	D.	50 %
13	A te	ension member is designed for		
	А.	Factored tensile force	B.	Service tensile force
	C.	Maximum tensile force	D.	Any one of these
14	The	best section for tension member will be		-
	А.	Double angles on same side of G.P	B.	Double angles on same side of
		with tack bolt		G.P without tack bolted
	C.	Double angles on opposite side of	D.	Double angles on opposite side
15	As	enderness ratio in a tension member as per	IS: 80	00-2007, where reversed of stress is
	due	to loads other than wind or seismic loads sl	nould	not exceed
	А.	350	B.	180
	C.	400	D.	250
16	Wh	ich one of the following is not a tension me	mber	?
	А.	Cable	B.	Bar
	C.	Boom	D.	Angle
17	An	angle section is connected to a gusset p	late v	with fillet weld. The block shear
	fail	ure will occur due to	П	There it fame
	A.	Shear force	B.	Tensile force
10	C.	Compressive force	D.	Bending due to transverse forces
18	1 ne	minimum pitch of bolt allowed in the code	1S	
	A.	1.5 d	B.	2.0 d
10	C.	2.5 d	D.	3.0 d
19	For		П	
	A.	18 mm	B.	22 mm
20	C.	21.5 mm	D.	23 mm
20	The	minimum size of fillet weld is		
	A.	3 mm	В.	4 mm
	C.	3.5 mm	D.	5 mm
21	Par	tial safety factor for field welding is	-	
	Α.	2.0	В.	1.5
	C.	1.25	D.	2.5
22	Mir	nimum end return of weld is	r	
	А.	2 x size of weld	В.	3 x size of weld
	C.	2.5 x size of weld	D.	4 x size of weld
23	The	maximum slenderness ratio permitted for t	he me	ember which always remains in
	A.	180	B.	240
	C.	350	D.	400
24	The	angle connected to G.P with longer leg res	ist mo	bre tensile load than if connected by
	sho	rter leg to G.P.		
	A.	True	В.	False

	C.		D.		
25	The single connected with G.P by wilding resist more tension force compare to if the same				
	ang	le is connected with G.P by bolt.	D	False	
	A.	Irue	B. D	Faise	
26	C.		D.		
26	The both	double angles provided on either side of G	.P ca	n resist same tension force even if	
	A.	True	В.	False	
	C.		D.		
27	In e	equation, $T_{dn} = \alpha A_n f_u / \gamma_{m1}$, $\alpha = 0.6$ can	be t	aken if	
	А.	One or two bolts are provided	B.	Three bolts are provided	
	C.	Four or more bolts are provided	D.	Welding is provided	
28	Whi	ch type of cross section gives an ideal beha	vior	as a beam?	
	A.	Plastic	B.	Compact	
	C.	Semi-compact	D.	Slender	
29	The	buckling class of angle section is	1		
	А.	Class - a	B.	Class - b	
	C.	Class - c	D.	Class - d	
30	The	partial safety factor for material in resistant	ce, go	overned by yielding is, γ_{m0} is	
	А.	1.25	B.	1.10	
	C.	0.9	D.	1.20	
31	The	partial safety factor for material in resistant	ce, go	overned by ultimate stress, γ_{m1} is	
	А.	1.25	B.	1.10	
	C.	0.9	D.	1.20	
32	Des	ign strength of tension member is taken	as s	mallest of T_{dg} , T_{dn} , and T_{db} .	
	А.	True	B.	False	
	C.		D.		
33	In e	quation of rupture strength of an angle in te	nsion	, the term β will have a value always	
	A.	True	B.	false	
	C.	false	D.		
34	In e	quation of block shear strength of tension n	nemb	er, the term A_{vg} stands for	
	А.	Minimum gross area of shear	B.	Maximum gross area of shear	
	C.	Minimum tension area	D.	Net area of shear	
35	The	most efficient and economical section used	l as b	eam is	
	А.	I-section	B.	H-section	
	C.	Angles	D.	Circular section	
36	Stre	ngth of tension member			
	А.	Yield stress	В.	Net area	
	C.	Ultimate stress	D.	Length of connection	
37	An	ISA 100x75x8 mm is used as a tension	mem	ber and connected to 10 mm thick	

	gusset plate by bolts. What is the maximum pitch of bolt?			
	А.	200 mm	B.	128 mm
	C.	160 mm	D.	300 mm
38	As 1 effic	ong as the strength of tension member is go ciency is	verne	ed by yielding of gross section, the
	A.	100 %	B.	20 %
	C.	30 %	D.	40 %
39	The	strength of tensile members is not influence	ed by	
	A.	Length of connection	B.	Net area of cross section
	C.	Type of fabrication	D.	Length of plate
40	Wha	at are steel tension member?		
	А.	Structural elements that are subjected	B.	Structural elements that are
		to direct compressive loads		subjected to direct tensile loads
	C.	Structural elements that are subjected	D.	Structural elements that are
		to indirect compressive loads		subjected to indirect tensile loads
41	Bar	s and rods are not used as		
	А.	Tension members in bracing system	В.	Friction resistant members
	C.	Sag rod used to support purlin	D.	To support girts in industrial building
42	Wh	ich of the following type of tension men	nber	is not mainly used in modern
	practice?			
	А.	Open section such as angles	В.	Flat bars
	C.	Double angles	D.	Circular section
43	Wha	at is the net section area of steel plate 40 cm	wide	e and 10 cm thick with one bolt if
		38.2 cm^2	R	20 cm^2
	л. С	240 mm^2	D. D	480 mm^2
4.4	C.	240 mm	D.	a single helt of 20mm diameter in 2022
44	of d	rilled hole?	with	a single bolt of 2011111 diameter in case
	А.	624 mm ²	B.	756 mm ²
	C.	800 mm ²	D.	640 mm ²
45	Dete	ermine the effective net area for angle section	on IS.	A 100x75x12 mm, when 100 mm leg
	is co	pnnected to a gusset plate using weld of leng	gth 14	40mm.
	А.	1795 mm ²	В.	1812 mm ²
	C.	1956 mm^2	D.	2100 mm^2
46	Cale	culate the value of β for the given angle sec	tion I	SA 150x115x8 mm of Fe410 grade of
	stee	I connected with gusset plate. Length of we	d = 1	150mm.
	А.	0.89	В.	0.75
	C.	0.5	D.	1.0
47	Cal	culate the tensile strength due to gros	s se	ction yielding of an angle section
	125	x75x10 mm of Fe410 grade of steel con	nect	ed with a gusset plate.
	А.	780 kN	В.	586.95 kN
	C.	432.27 kN	D.	225.36 kN
48	A s	single unequal angle 100x75x10 mm I	Fe41	0 grade of steel is connected to a

	10mm thick gusset plate at the ends with 6nos-16mm diameter bolts with pitch of 40mm to transfer tension. Find the tensile strength due to net section rupture if					
	gusset is connected to 100mm leg.					
	A.	526.83 kN	B.	385.74 kN		
	C.	450.98 kN	D.	416.62 kN		
49	Minimum edge distances specified by code should be maintained to avoid					
	A.	Rupture of plate	В.	Shearing of plate		
	C.	Crushing of plate	D.	Both B and C		
50	Minimum edge distance is equal to					
	А.	2.5 d _h	B.	2.0 d _h		
	C.	1.5 d _h	D.	None of these		

	Unit – 3 Compression Member			
1	The	e main advantages of a steel member is t	hat it	t
	A.	Has high strength	В.	Is gas and water tight
	C.	Has long service life	D.	All of these
2	The	type of rolled steel section mainly used	l as s	tructural member is
	А.	Rolled steel I-section	В.	Rolled steel channel section
	C.	Rolled steel T-section	D.	All of these
3	As p	per Indian standards, rolled steel I-section a	re cla	ssified into
	A.	Four series	В.	Five series
	C.	Six series	D.	Seven series
4	Rol	led steel angles section are classified as	1	
	А.	Two series	В.	Three series
	C.	Four series	D.	Five series
5	Rol	led steel angle sections are classified as Ind	ian st	andard equal and unequal angles.
	А.	Yes	B.	No
	C.	No	D.	
6	Rol	led steel equal and unequal sections are des	ignate	ed as ISA followed by
	А.	Lengths and thickness of legs	В.	Width of flanges and depth of web
	C.	Depth of section and weight per metre length	D.	Any one of the these
7	Ac	hannel section consists of		
	A.	Two webs	В.	Two flanges
	C.	Two webs and two flanges	D.	One web and two flanges
8	The	allowable stress to which a structural mem	ber ca	an be subjected is called
	A.	shear stress	В.	Permissible stress
	C.	Tensile stress	D.	Bearing stress
9	A st	ructural member subjected to compressive	force	in a direction parallel to its
	A.	Beam	B.	Column
	C.	Slab	D.	None of these
10	Whi	ich of the following is not a compression m	embe	r?
	A.	Strut	B.	Tie
	C.	Rafter	D.	Boom
11	a st	rut is a structural member subjected to		
	A.	Tension in a direction parallel to its	B.	Tension in a direction
		longitudinal axis		perpendicular to its longitudinal
			_	axis
	C.	Compression in a direction parallel	D.	Compression in a direction
				axis
12	When compression members are overloaded, then their failure takes place because			

	of			
	А.	Direct compression	B.	Excessive bending
	C.	Bending combined with twisting	D.	Any one of these
13	The	axial load which is sufficient to keep the c	olum	n in a slight deflected shape is called
	А.	Critical load	B.	Crippling load
	C.	Buckling load	D.	Any one of these
14	The	failure of a column depends upon	1	
	А.	Weight on column	B.	Length of column
	C.	Cross-sectional area of column	D.	Slenderness ratio of column
15	Whe	en the cross-sectional area of the column is	kept	constant, the load required to cause
	failu	are due to direct compression as t	the le	ngth of column increases.
	А.	Increases	В.	Decreases
	C.		D.	
16	Buc	kling is defined as the sudden bending of th	e ele	ments or members under compressive
	A	Agree	B	Disagree
	C		D.	
17	C. The	term strut is commonly used for	men	abers in roof trusses
17				
	Α.	Compression	В.	Tension
	C.	Shear	D.	None of these
18	A st	rut is a compression member which is		
	А.	Small in length	В.	Loaded lightly
	C.	Vertical or inclined	D.	All of these
19	If 1	is the length of column hinged at both ends	and	EI is its flexural rigidity, then critical
		$\pi^2 E I$	B	$\pi^2 EI$
	А.	$\frac{\pi}{12}$	D.	$\frac{\pi}{212}$
	C.	$\frac{l^2}{\pi^2 E I}$	D.	$\frac{2l^2}{\pi^2 E I}$
	0.	$\frac{1}{3l^2}$	2.	$\frac{1}{4l^2}$
20	Effe	ective length of a column is the length betwee	een th	ne points of
	A.	Maximum moments	B.	Zero shear
	C.	Zero moments	D.	None of these
21	The	effective length is the support length of	faco	blumn.
	A.	Right	B.	Wrong
	C.		D.	
22	The	effective length of column, held in pos	ition	at both ends but not restrained in
	dire	ection, is equal to		
	Wh	ere L = Length of column		
	A.	0.67 L	В.	0.85 L
	C.	L	D.	1.2 L
23	If I	is the moment of inertia of section about th	e axi	s and A is its effective length of the
	compression member to the			

	A.	Γ	В.	
		$\left \right \left \frac{1}{\Delta} \right $		$\left \frac{1}{2\Lambda}\right $
			D	VZA
	C.		D.	1
		$\sqrt{3A}$		$\sqrt{4A}$
24	The	slenderness ratio of a single angle strut sho	uld b	e less than
	А.	180	B.	250
	C.	300	D.	350
25	Max	kimum slenderness ratio of a compression n	nemb	er which carry loads resulting from
	A.	180	B.	250
	C.	300	D.	350
26	Sler	derness ratio of a compression member is t	he ra	tio of effective length of the
	com	pression member to the	1	
	А.	Area of cross-section	В.	Moment of inertia
	C.	Radius of gyration	D.	Critical load
27	Allo	owable working stress for rolled steel be	am s	ection compression members may
	be a	assumed as		
	A.	60 N/mm ²	B.	80 N/mm ²
	C.	100 N/mm ²	D.	120 N/mm ²
28	The	buckling load in a steel column is	1	
	А.	Related to the length	B.	Directly proportional to
			_	slenderness ratio
	C.	Inversely proportional to slenderness ratio	D.	Non-linearly to the slenderness ratio
29	The	lateral system used in builtup column, to ca	arry t	he transverse shear force, is
	A.	Lacing	B.	Batten plates
	C.	Perforated plates	D.	Any one of these
30	The	common section used in lacing, is	l	
	A.	Rolled steel flat	B.	Rolled channel
	C.	Rolled angle	D.	All of these
31	As	ingle triangular system is formed in the	case	of
	A.	Single lacing	B.	Double lacing
	C.	Both A and B	D.	None of these
32	The	angle of inclination of lacing bars with	the l	ongitudinal axis of the component
	mer	nber should not be	-	
	Α.	Less than 40°	В.	More than 70°
	С.	Both A and B	D.	None of these
33	Acc the	ording to IS:800-1984, lacing bars should reaxial load in the member.	esist a	a transverse shear equal to of
	A.	2.5 %	B.	5 %
	C.	7.5 %	D.	10 %

34	Slenderness ratio of the lacing bar for compression member should not excess			
	А.	125	B.	135
	C.	145	D.	155
35	In a	double lacing, the lacing flats are placed to	form	a single triangular system.
	А.	Yes	B.	no
	C.		D.	
36	The	battening is preferred when the	I	
	А.	Column is axially loaded	B.	Space between the two main
	0		D	components is not very large
07	C.	Both A and B	D.	None of these
37	The	battened plates used to connect the con	npon	ents of built up column are
	des	igned to resist		
	А.	Longitudinal shear	B.	Transverse shear
	C.	Moment a rising from transverse	D.	None of these
• •		shear		
38	The	number of batten plates should be such tha	t it di	vides the column longitudinal in at
	A.	Two	B.	Three
	C.	Four	D.	five
39	The	effective length of a battened columns show	uld be	e increased by
	A.	5 %	B.	10 %
	C.	15 %	D.	20 %
40	The	thickness of batten plate should be greater	than	$1/50^{\text{th}}$ of the distance between the
	inne	ermost connecting lines or welds.		
	A.	True	B.	False
41	C.		D.	
41	wh	ich of the following section will be preferre	d for	column section?
	A.	ISMB	В.	ISLB
10	С.	ISWB	D.	ISHB
42	For	equal cross-sectional area, the most effi	icient	t section for column is
	A.	1-section	В.	Channel section
	С.	Hollow circular section	D.	Circular section
43	Fail	ure in a short columns are generally by	1	
	А.	Crushing of material	В.	Elastic buckling
	C.	Inelastic buckling	D.	Torsional buckling
44	For	compression member, maximum spacing o	f tack	bolts is
	A.	12 t	В.	500 mm
	С.	600 mm	D.	1000 mm
45	The give	design compressive stress of axially loaded en by	l com	pression members in IS : 800-2007 is
	A.	Merchant rankine formula	B.	Secant formula

	C.	Euler's formula	D.	Perry Robertson formula	
46	Tabular sections form most economical compression member because				
	A.	It has high lateral buckling strength	В.	It has high torsional resistance	
	C.	Subjected to less wind force	D.	All the above	
47	Bat	tens are designed for			
	А.	Shear force	B.	Bending moment	
	C.	Shear force and bending moment	D.	Torsional moment	
48	Battens are designed for transverse shear force V_t equal to				
	А.	10 % of total axial force on column	B.	5 % of total axial force on column	
	C.	2.5 % of total axial force on column	D.	1 % of total axial force on column	
49	As p	per IS-800-2007, f _{cd} stands for			
	А.	Design tensile stress	B.	Design compressive stress	
	C.	Design bending stress	D.	Design torsion stress	
50	Ac	ompression member in a roof truss is norma	lly tr	eated as	
	A.	Column	В.	Secondary beam	
	C.	Strut	D.	Main tie	

Unit – 5 Slab Base foundation				
1	In s	lab base foundation, maximum bearing	stren	gth of concrete is taken as
	A.	0.45 f _{ck}	B.	0.50 f _{ck}
	C.	0.60 f _{ck}	D.	0.70 f _{ck}
2	In a	gusseted base, the critical section for co	onsid	lering the thickness of base plate is
	А.	At the centre of base plate	B.	At the edge of base plate
	C.	At the root of gusset plate	D.	At C.G of gusset plate
3	In a	gusset base, when the end of the column is	mach	nined for complete bearing on the base
	plat A	e, then the axial load is assumed to be trans: Fully by direct bearing	B	to base plate Fully through fastenings
	Г. С	50% by direct bearing and 50%	D.	75% by direct bearing and 25%
	C.	through fastenings	D.	through fastenings
4	To con load	keep the intensity of bearing pressure be pressive and to vary from zero to 2P/Bl d P should be	etwee L, the	en the column base and concrete e ratio of the moment M to the axial
	A.	L/2	B.	L/3
	C.	L/4	D.	L/6
5	In a	grillage footing, the maximum shear fo	rce c	occurs at the
	А.	Edge of grillage beam	B.	Centre of base plate
	C.	Centre of grillage beam	D.	Centre of base plate
6	Picl	k up the correct statement from the follo	wing	;
	А.	Loaded columns are supported on column bases	B.	Column bases transmit the column load to the concrete foundation
	C.	Column load is spread over a large area on concrete	D.	All the above
7	As	lab base is subjected to an axial load of	1500	kN. Use M15 Concrete for the
	ped	estal. Find the bearing strength of concr	ete.	12 N/ 2
	A.	9 N/mm ²	B.	12 N/mm ⁻
0	C.	15 N/mm ⁻	D.	20 N/mm ⁻
0		The column.	D	P 1
	A.	True	B.	False
0	C.	up have limit the deflections of the column	D.	
9			П	Ealas
	A.	True	B.	False
10	C.	ump transfor their loads to the soil through	D.	an hagas recting over concrete or
10	mas	onry blocks.	Joiun	in bases resting over concrete or
	A.	True	B.	False
	C.		D.	
11	Wh	ich foundation is use for eccentric loade	d ste	el column?
	A.	Grillage foundation	B.	Gusseted base

	C.	Slab base	D.	None of these	
12	A column base is subjected to moment. If intensity of bearing pressure due to axial				
	load is equal to stress due to moment, then bearing pressure between base and the				
	concrete is				
	А.	Uniform compression throughout	В.	Zero at one end and compression	
	C	Tansian at one and and compression	П	at other end	
	C.	at other end	D.	Childrin tension throughout	
13	Ac	olumn section ISHB 350 @724 N/m of	250 1	mm width carries an axial load of	
	350	0 kN. If square base plate having 0.90 n	n side	es is used, M20 grade of concrete	
	and	Fe415 grade of steel. Find the bearing s	streng	gth of concrete.	
	А.	9 N/mm ²	В.	12 N/mm ²	
	C.	15 N/mm ²	D.	20 N/mm ²	
14	For	proper transmission of loads the safe be	earing	g capacity of the soil to be	
	dete	ermined.	П	F -1	
	A.	Irue	В.	False	
	C.		D.		
15	A st	tructural member subjected to compress	ive s	tress in a direction parallel to its	
	long	gitudinal axis, is generally known as	D	Stanchion	
	A.		D.		
16	C.	Post	D.	All the above	
16	For	the gusseted base, cantilever moment p are $w = base a stress = cantilever in$	er un	it width is equal to	
	A	w $c^2/2$	\mathbf{B}	$w c^2/4$	
	C	$w c^2/8$	D.	$w c^2 / 12$	
17	U.Wh	ere the column end is not machined the	conn	ection is designed to transmit the	
17	colu	umn load to the base plate through weld	ed co	onnection.	
	А.	True	B.	False	
	C.		D.		
18	Colu	umn base provide proper and firm anchorag	e to t	he column end.	
	A.	True	B.	False	
	C		D		
19	Colu	umn base provide proper alignment of colu	mns i	n plan.	
	Α	True	В	False	
	C		D.		
20	Colu	umn base protect the base from floor/ground	d corr	rosion	
	Δ		R	False	
	A.	Concentrated	D.		
21	U. 1171	Concentrated	D.	always to be mated an arrest as '10	
21	wn	ICT TOURDATION IS USE FOR heavy loaded s		Column to be rested on weak soll?	
	A.	Grillage foundation	В.	Gusseted base	
	С.	Slab base	D.	None of these	
22	Ag	rillage base is checked for			
	Α.	Bending	В.	Shear	

	C.	Web crippling	D.	All of these		
23	A slab base is subjected to an axial load of 1500 kN. Use M20 Concrete for the					
	pedestal. Find the required area of plate.					
	А.	$1.66 \text{ x } 10^3 \text{ mm}^2$	В.	$4.5 \times 10^3 \text{ mm}^2$		
	C.	$3.0 \times 10^3 \text{ mm}^2$	D.	$2.0 \text{ x } 10^3 \text{ mm}^2$		
24	A slab base having axial factored load of 1500 kN for built up column. SBC of soil					
	is 220 kN/mm ² and grade of concrete is M20. Use Fe410 steel. Find the required					
	area	a of concrete block. 3.5 m^2	D	2.5 m^2		
	A.	4.4 m^2	D.	5.0 m^2		
25	С. Б	4.4 m	D.	5.0 m		
25	For the gusseted base, length of base plate is equal to					
	А.	Area of base plate required / width of	В.	Area of base plate required x		
	C	the base plate	D	width of the base plate		
	C.	of the base plate	D.	None of these		
26	The	base plate is fitted to the concrete found	datio	n with two or four 20 mm diameter		
	hole	ding down bolts.				
	A.	True	В.	False		
	C.		D.			
27	The	gusseted base consists of a base plate, t	two g	gusset plates one over each flange		
	of the column and two angles.					
	А.	True	В.	False		
	C.		D.			
28	In column base, the pressure on the concrete block does not exceed the permissible					
	A.	True	B.	False		
	C.					
29	The	permissible bending stress in slab bases for	· staal	ie		
_>		150 MPa	D	160 MD ₂		
	A.	195 MD ₂	D.	None of these		
20	U.		. D.	None of these		
30	wn bloa	en a steel column carrying an axial load	1S SU	ipported directly by over a concrete		
	A.	True	B.	False		
	C.		D.			
31	Wh	ich foundation is use for lightly axially	loade	ed steel column?		
	A.	Grillage foundation	B.	Gusseted base		
	C.	Slab base	D.	None of these		
32	Ac	olumn section ISHB 350 @724 N/m of	250 1	mm width carries an axial load of		
	1200 kN. If rectangle base plate having 0.45×0.35 m sides is used, then what wi					
	be t	be the minimum thickness of base plate?				
	Α.	12.11 mm	B.	11.6 mm		
	С.	10 mm	D.	None of these		
33	A slab base is subjected to an axial load of 1200 kN. Use M25 Concrete for the					
	ped	pedestal. Find the bearing strength of concrete.				

	A.	5 N/mm ²	B.	12 N/mm ²		
	C.	15 N/mm ²	D.	20 N/mm ²		
34	The allowable bearing capacity is much smaller than the permissible stresses on the steel					
	A	Inns. True	false			
	C		D.			
35	C. For	a slab base foundation, area of base plate is	D.			
55						
	А.	Load on column / permissible	В.	Permissible bearing stress in		
	С	Area of concrete block / load on	D	L oad on column / Area of		
	С.	column	D.	concrete block		
36	In gusset plate, Connections are designed for 50% of the column load.					
	А.	True	B.	false		
	C.		D.			
37	Number of bolts on a gusset plate and gusset angle is equal to					
	A.	Load per gusset plate / Design	B.	Load per gusset plate + Design		
		strength of a bolt		strength of a bolt		
	C.	Load per gusset plate x Design	D.	Load per gusset plate - Design		
		strength of a bolt		strength of a bolt		
38	Cle	at angles riveted to the column web of a	n I-s	ection used as a column and base		
	plate.					
	А.	True	В.	False		
	C.		D.			
39	Effective length of columns depends upon its end conditions.					
	А.	True	В.	false		
	C.		D.			
40	A column splice is used to increase the length of the column.					
	А.	True	В.	false		
	C.		D.			
41	A column section ISHB 350 @724 N/m of 250 mm width carries an axial load of					
	350	0 kN. If square base plate having 0.90 m	n side	es is used, then what will be the		
minimum thickness of base plate?						
	А.	85 mm	В.	70.5 mm		
	C.	94.37 mm	D.	78 mm		
42	As	lab base is subjected to an axial load of	1200	kN. Use M25 Concrete for the		
	ped	estal. Find the required area of concrete	bloc	k.		
	А.	3.5 m ²	В.	2.5 m ²		
	C.	4.4 m^2	D.	5.0 m^2		
43	A slab base having axial factored load of 1500 kN for built up column. provided of					
	base plate is 19200 mm ² . SBC of soil is $220 \text{ kN} / \text{mm}^2$ and grade of concrete is					
	M20. Use Fe410 steel. Calculate thickness of base plate.					
	A.	12.26 mm	В.	11.6 mm		
	C.	10 mm	D.	None of these		

44	The web crippling due to excessive bearing stress can be avoided by						
	А.	Increasing the web thickness	B.	Providing suitable stiffeners			
	C.	Increasing the length of the bearing plates	D.	None of the above			
45	For the gusseted base, Bearing stress on base plate (w) equal to						
	А.	Column load / actual area of base	В.	Column load x actual area of base			
		plate		plate			
	C.	Column load + actual area of base	D.	Column load - actual area of base			
		plate		plate			
46	Gusseted welded base plate connections, load transmitted to one gusset plate is equal to						
	А.	1/4 th x (load on column)	В.	¹ / ₂ x (load on column)			
	C.	$1/3^{rd}$ x (load on column)	D.	$1/5^{\text{th}}$ x (load on column)			
47	47 Under the action of the downward load exerted by the column on the base						
	and the upward reaction exerted by the concrete foundation, the base plate is						
	subjected to bending in two principal directions.						
	A.	True	В.	False			
	C.		D.				
48	om a steel column to a concrete						
	foundation.						
	A.	True	В.	False			
	C.		D.				
49	The slab bases are very convenient to use because the fabrication required is						
	minimum.						
	А.	True	В.	False			
	C.		D.				
50	0 When a steel column carrying an axial load is supported directly by						
	block, it may fail by						
	A.	Tilting	B.	Buckling			
	C.	Punching	D.	None of these			